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Abstract. Thhe normally ordered Hilben space image of the general (complex) linear 
similarity transformation in phase space is obiained in coherent state representation. 
Although preserving the commutator of a and at, these quantum mechanical images of 
classical transformations are generally not unitary. Remarkably, although the kets and bras 
produced by the non-unitary similarity transformations are not Hermitian conjugates, 
squeezed state analogues produced using the similarity transformation still satisfy an 
overcompleteness relation. The results are extended to two-mode Fock space and simple 

the normally ordered operators is greatly facilitated by the use of inregmion within ordered 
produerr 

Cld"1CS "i tile viiiiiy of tile simiiariiy iransf"rlllati"rl are preseriied. The r V a i Y d t i U l i  of 

1. Introduction 

Within quantum mechanics a change of basis or representation is effected by means 
of a unitary transformation, U, where the bra la) in the new basis is Ulu) and the 
corresponding ket (a1 Ut [I]. The (non-unitary) complex linear transformation of 
canonical variables has been considered by Wolf [2] and Kramer ef a /  [3]. The mapping 
of the position and momentum operators onto the annihilation operator a and creation 
operator a' is a familiar example of such a non-unitary transformation. 

It is well known that unitary transformations preserve completeness of a basis. For 
coherent states la) = D(a)IO), this completeness is expressed by the relation [4] 

where d2a d(Re a )  d(1m a). It occurred to us that closure might not be limited to 
the Hermitian conjugate bra and ket pair produced by unitary transformations, but 
might in fact extend to states transformed by the more general similarity transformation 
such that I Q ) =  D ( a )  WlO) and ((1=(01 W - ' D t ( a )  generate the relation 

Thus, although Iq) and ((1 are not Hermitian conjugates, they still form an (over)com- 
plete basis. 

t Permanent address: China LhiversityofScience and Technology, Hefei. Anhui, People's RepublicofChina. 
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In this paper we obtain the coherent state representation and the normally ordered 
form of the general linear similarity transformation of U' and a, the creation and 
annihilation operators of the harmonic oscillator. Transforming the ground state of 
the harmonic oscillator with this similarity transformation, followed by a Glauber 
displacement, we produce the eigenstates of the non-Hermitian images of a' and a 
and, with one taken as bra and the other as ket, we show that these eigenstates satisfy 
the completeness relation (1.2). 

In this introduction we briefly recapitulate an earlier paper [ 5 ]  in order to establish 
the method of proceeding and to define our terms. In section 2 we obtain the transforma- 
tion required in one-mode Fock space and extend this result to two-mode Fock space 
in section 3. The completeness of the squeezed state analogues is demonstrated in 
section 4 and finally in section 5 we give several applications of the completeness 
relation and the similarity transformations. 

In [ 5 ]  we investigated how real classical linear transformations in coordinate 
momentum phase space are mapped to unitary quantum mechanical operators in 
Hilbert space. The resulting operators were evaluated using the integrution within 
ordered products (IWOP) [6] technique in the coherent state representation, and were 
shown to be a generalization of the familiar squeeze operators [7]. In this paper we 
will further generalize the transformations to encompass complex canonical transforma- 
tions. To briefly review the results of [ 5 ] ,  it was shown that the operator U defined by 

where 

is the coherent state, 10) the harmonic oscillator's ground state, U' = 2-'/*( 6 -iB) its 
creation operator (for convenience we have taken h = w = m = 1) and 

(1.5) s = $ [ ( A  + D )  + i( B - C ) ]  

generates the transformation 

ufdu = A Q +  BB l J t B U = C 6 + D @  (1.6) 

with A, B, C, D real and A D - B C =  1. Rewriting the ket in (1.3) as 

with ~ = 2 - " ~ ( q + i p )  and r = f [ ( D - A ) - i ( B + C ) ] ,  we recast (1.3) into the form 

U ( g )  = s1"21s1 1 T-' d2zls*z- rz*)(zl (1.8) 

with 

Iz)=e'"'-:'" 10) = 12). (1.9) 

The coherent state lz) satisfies u / z )  = zlz). Expression (1.8) was then integrated using 
the IWOP technique. Equation (1.6) may be rewritten as 

U'alJ=s*a-ra '  ', = IJ'~' = sa' - ra* (1.10) 
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with Is12-lr12=1. Clearly a '  and at '  are Hermitian conjugates and [a',a"]= 1. In 
passing, we note also that U t =  U-' .  

given by 

t In section 2 we investigate the general linear similarity transformation of a and a 

d = Wa W-' = p a  + vat  g' = Wa' w-' ua + T a t  (1.11) 

with p, v, U, T arbitrary complex numbers satisfying p ~ -  uv = 1. It is easily seen that 
the simiiarity transformation w preserves the commutator id, g'j = i even though d 
and gr are not generally Hermitian conjugates. 

2. Derivation of W in the coherent state representation 

Guided by the earlier work quoted in (1.7), we postulate the following coherent state 
representation for W: 

with ~ T - U Y =  1, where we make, consistent with (1.9), the definition 

Note that in contrast to expression (1.9) for the usual coherent state, the coefficients 
of a and a' are not complex conjugates. 

We expand ( 2 2 )  using the Baker-Hausdorff formula to obtain 

(2.2) = exp[(f - p~.r) lzI '+ (n - z * v ) a t + ~ v p r * 2 + f u ~ z ' ] l o ) .  (2.3) 

With the aid of a formula from [ 6 ] ,  

having convergence conditions 

R e M + f + g )  < O  
Re[(i2-4fg)l(C+f+g)1<0 

Re(S-f-g)<O 
Re[(12- 4fg)l(i -f- g ) l <  0 

or 

we effect the integration of (2.1) using the IWOP technique: 

(2 .5)  
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where : : denotes the normal product and we have used /O)(Ol =:e-"'": and e"'"" = 
:exp{(e"- l )a ta] : .  

Fan Hong-Yi and J VanderLinde 

With the aid of (2.5) and its inverse 

exp(a'a In p )  exp - at2 
(2: 1 

we easily verify that W generates the transformations (1.10) as 

d =  WaW-'=exp 1 

gT=Wa'W- '=exp -aT2 -+ua exp -a = ~ a ' + v a  (i; 1c 1 (2: +21 
(2.7a) 

(2.7b) 

Having obtained the normally ordered form of W, we may forget its origins. In particular 
we lift the convergence restrictions of the integral (2.4) above. The inverse transforma- 
tions follow immediately from (2.6) and (2.7): 

W-'aW= Ta - vat and W-'a w = pa+ - ua. (2.8) 
We will also require W-' in normal order. Again using IWOP, (2.4) and the 

overcompleteness relation for the coherent state, 

:exp( -Iz12+za++z*a - a + a ) :  = 1 (2.9) 
7r 

we re-evaluate 

= p  112 1 -:exp ":: ( -lz12+pza+--z 2 +z*a+-z*'- V a + a):  

"at2 
2 2P 

(I: ) - - T-1/2 exp( 7) exp(-ala in 7 )  exp - a2 # w+. (2.10) 

The conditions of (2.4) may in fact be shown to be overly restrictive; an explicit 

The classical phase space map analogous to that of (1.6) may now be constructed. 
evaluation of ww-' gives m-' = W-' W = 1. 

Setting 

wQw-' = 2-'12 ~ ( a  + a + )  W-' = 2- ' l2(pa + vat+,+ Tat) 

= ;[ Q(p + U +  V +  T)+i f  ( p +  U - V -  T ) ] ,  

Similarly, W f W - ' = f [ ~ ( p - ~ + ~ - v ) + i ~ ( u - p + ~ - u ) ] .  Thus W is the Hilbert 
space image of the general complex phase space map 

q' = A'q + B'p p' = C'q + D'p (2.11) 

with 
I 

E ' =  - ( p  + U - U - T) 
2 

A'= ; (p  + v + U+ T )  

~ ' = - ( ~ + ~ - ~ - p )  I D ' = + ( ~ - u - v + T ) .  
2 

(2.12) 
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The coefficients satisfy A'D'-B'C'= 1 and (2.1) can be cast in the form 

Conversely, given the phase space map above, p, U, U, T may be found as 

U =+[ (A ' -D ' )+  i( E'+ C ' ) ]  p =;[(A'+ D')+i(  C ' -  E ' ) ]  
u = $ ( A ' - D ' )  -i(B'+ C')! 7 = + [ ( A ' +  n ' ) + i ( A ' -  c')!: 

Substituting (2.14) into (2.7) we obtain 

WGW-'=A,Q+B,B and WPW-' = C'$+ D'k 

2533 

(2.13) 

(2.14) 

(2.15) 

The commutator [A'$+E'@, C'G+D' f i ]=  1, and we note that W is not a unitary 
transformation unless A', E', C' and D' are all real. 

3. The two-mode transformation 

We next turn our attention to linear maps in the space generated by two harmonic 
oscillators. We let a be the annihilation operator of the first mode whose canonical 
coordinates are q ,  and p , ,  and b the annihilation operator for the second mode with 
coordinates q2 and p2. We define, as for the one-mode case, ~ , = T " ~ ( q , + i p ~ )  and 
z2- 2-"*(q2+ip,). In [SI we obtained the unitary transformation U'2' that generalizes 
the transformation of a and b produced by the customary two-mode squeeze operator 
[SI 

SOS'= a cosh r +  b' exp(2ip) sinh r 

U"" -" C V I l ,  I I U CAp'ILnC, siiirr i 
C h C ' - h r n r h  v L n t ~ v . . 1 7 : , - l  ' Ir (3.1) 

to 
a l l =  U'2'aU'2't= s * a-rb' b" = u(2)bU[2" = s*b - la' 

U(2)atU(2)'=sa'-r*b b'"= (,'2'b'U'2'* = sbt-r*a. (3.2) 

We now seek to further generalize this result by finding the similarity transformation 
V that maintains the commutation relations for the transformed annihilation and 
creation operators, without requiring unitarily. In other words, we seek V that trans- 
forms a, a', b and b' according to 

VaV-' = p a  + ub' 

Va' V-' = Tat + ub 

V b V ' = p b + u a '  

Vb'V-' = Tb++ ua. 

Guided by the results of [5], we tentatively identify V as 

I 

Following the example of (2.2). we express this as 

(3.3) 
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which may be recast as  
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+z,Tb'+ zT(b - vat) - aa' - bb']: (3.6) 
and integrated (when Re(pT)> 0) using IWOP to obtain 

V = p L - '  :exp[-vp- 'atbt+(a 'a + b'b)(p-'- l )+(upL 'ab) ] :  

= p  - I  exp(-up-'a'b') exp[-(ara+b'b) In p ]  exp(up-'ab). (3.7) 
It is now a simple matter to verify that (3.7) is indeed the operator required to effect 
the similarity transformation (3.3). Proceeding as in (2.11), we find that Vis the Hilbert 
space image of the two-mode phase space map 

-B'-C' -C'+B' -D'+A'  A'+D' 

As in the single-mode case we shall require V-' in normally ordered form. From (3.7) 
/ " \  (i a'b'j 

V- '=pexp(-;ab) exp[(a 'a+btb)Inp]exp 

4. Transformed coherent states 

4.1. Single mode 

Traditionally [9, IO] squeezed states may be generated by squeezing the ground state 
10) and then displacing the resulting squeezed ground state IO), with the Glauber 
displacement operator D ( a )  E exp(aa'- a*a). Following this approach, we replace 
the traditional squeeze operator with W from (2 .5) .  Thus the state la; p, U)- D ( a )  WlO) 
is given by 

D ( a )  WlO) = e x p ( k  U (a '-  aa'-f ' )  ai2 10). (4.1) 

(4.2) 
It is worth noting that (a; p, v) satisfies the eigenvalue equation 

( p a  + va')la; p, v)= (pa  + va*)la; p, U). 
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In a similar fashion we construct (a; T , u ~ = ( O ~ W ~ ' D ' ( ~ ) ,  noting that as W is not 
unitary W-',  not W t ,  is required to produce the bra 

(a; T,u1=7-1/2(01exp (;: - (a-a)2+a*a-f lal ' )  (4.3) 

which satisfies 

(a; r, ul(aa + Tat) = (ua + ~ a * ) ( a ;  T,  ul. (4.4) 

In spite of the fact that la; p, U) and (a; T,  uI are not Hermitian conjugates, they 
do in fact satisfy the completeness relation (1.2). The completeness may be demon- 
strated (assuming the convergence of the integrals) with the aid of IWOP: 

=(PT)-"'Sd: -:exp [ -la12+a ( a t + - a  ':> +a* ( a+-a'  ) 

1 v U 

2P 27 
--(a*'+ at') -- (a*+a2) -ata  : 

= 1. (4.5) 

Thus we find that in contrast to unitary transformations where kets and their 
Hermitian conjugate bras satisfy the completeness relation, similarity transformations 
require bras to be acted on by W-' rather than Wr to satisfy (1.1). In fact, 
~ ~ ~ ' d 2 a l a ; ~ L , u ) ( a ; ~ , v I = ( I ~ L J 2 - ~ v 1 2 ) - ' / 2 ;  only when T = P *  and u=v* does this 
equal 1, in which case W is unitary. 

The alternative squeezed state analogues obtained b /  first displacing the ground 
state and then transforming 

b; P. v, U ) =  WD(a)lO) 
t 

= p  -112 exp --+----+-)lo) 1aI2 ua2 vat' aa 

( 2 2P 2P P 

satisfy the eigenvalue equations 

(Pa + ua ')la; P, v, 0) = a In; P. v, U )  

( u ; ~ , v , u / ( m  t + u a ) = a * ( a ; ~ , v , u I  
and 
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as well as the relation 

Fan Hang-Yi and J Vanderlinde 

T-' d2alu;  p, U, u ) ( a ;  T, U, (TI= 1. I 
4.2. Two mode 

Proceeding as in the single-mode case, we obtain the two-mode squeezed state analogues 

lap; p, U)= D ( a ) D ( p )  VlOO)= pL' exp -- ( a t -  u * ) ( b r  - p * )  lap) (4.8) i: 1 
( u p ;  7, ( ~ 1 ' ~ 0 0 1 V - ' D ~ ( n ) D ' ( p ) =  r-'(aPI exp( - - ( a - a ) ( b - p )  

and 

(4.9) 
U 

r 

The ket (4.8) and bra (4.9) satisfy the eigenvalue equations 

( p a + y b ' ) l a p ; p ,  u ) = ( w L ~ + @ * ) ~ ~ ; P ,  U )  

( p b  + vat )lap; p, 4 = (p.P + ua*)laP; P, 4 
and 

(ap; T,Ul(rU'+U~)=(ra*+Crp)(Up; T , C /  

and 

(ap; 7, Ul(Tb'+ua) = ( 7 p * + U a ) ( a p ;  7, (TI 

and their completeness relation is verified below: 

+a* a + - - '  + p  b * + - a  ( 3  i 3 
1 b ib  : 

7 

= 1  (provided Re(pL') > 0). (4.10) 

Again we find the bras and kets related by similarity transformations satisfy the 
completeness relation while the Hermitian conjugate bras and kets do not. 

5. Applications 

In the following applications it is assumed that the conditions for convergence of the 
various integrals are met. As a first application we use the completeness relation (4.5) 
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and the eigenvalue equation (4.2) to derive the normal product form of exp[A(pa + 
vat)']: 

= ( I  -2yvA)-"'exp - exp[-a'a h( l -2Apu)]exp 

(5 .2)  

To illustrate the use of the similarity transformation (2.7), we investigate the Glauber 
P-representation (see [4]) of an operator f(a,  a'): 

Applying the similarity transformation to both sides of (5.3), we get 

wf( a, a') W -  =f(pa  + ua', ua + ra') 

Using IWOP, and expressions (4.6) and (4.7) 

f ( p a  + vat, mu + Tat) 1 $ P(a ,  O I * ) ( p T ) - l / z  

a a  + ) :. (5.4) 
an '  a * a  ua' va*' uaT2 ua' 

-la1 +-+-+-+------ 
p r 2p 2 7  2p  27 

When P(a,  a*) is known, performing the integration can produce the normal product 
form of the operator f ( p a +  vat, ua+Ta'). We now present a specific example. 

Consider the P-representation of exp(-Aa'a) given by 

Using (5.41, we obtain 

e --*l~y+.',+l(*Y+"',', 

aa '  LY*U ua2 ua*' vat2 ua2 
p r 2 p  27 2 p  2r 

-e*la/ +-+-+-+------ 
 US(^ -e2*) 

exp[a'a(A-ln R)] exp (w(:;e'*) 
2R 

= e"R-'/' exp ( 
(5.6) 
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where R = p~ e'* - vu. Rewriting (5.6) as 
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-*(""+io'j(p"+"o') = - ~ i ~ " ' " l t r u a ' 2 + ~ , " " ~ + ~ , ~ i ~ j  e e 
- - e - A l  ha1+po i2+fb to+v i r )  

where h = pu, g = TU and f =  1 +2uv we recast this result in terms o f f ;  g, and h to 
obtain the useful result 
e - A l h ~ ' + g u ' 2 + f u ' ~ )  

x exp( h(12ie2A) a'). 

R may also he expressed in terms off ;  g and h as R = 2gh e'^/(f- 1) - (f- 1)/2. 

tion by noting that e*"=Jrr-' d 2 a  e" ' la)(al  and then using the methods above. 
The results of the first example could also have been obtained using the P representa- 

Conclusions 

Although in quantum mechanics non-Hermitian operators such as a and a' have found 
widespread use, the discussion of transformations has largely been restricted to unitary 
transformations. We have produced the normally ordered form of the general linear 
similarity transformation of a and a' and shown that it presents some very useful 
properties. In particular, it allows us to choose, for any linearly transformed annihilation 
operator d = pa + vaT having eigenkets IS), a whole range of associated creation 
operators g '=  ua + T a t  satisfying only [d, g'] = 1 whose eigenhras (71 may be sub- 
stituted for those of d '  in the closure relation. The generality of this result suggests 
wide applicability. 
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